
A Guide to Tensor Algebra
Here you can find some fundamentals of tensor algebra, intended as a set of rules and operations 
among tensors. What is a tensor? It is a mathematical object represented by an array of numbers. 
The structure of these objects depend on the tensorial order and on dimesionality of the space they 
live in. In the example below we use a 2D space for simplicity. You can extend all what you learn below 
to the 3D space we live in as an exercise. Let’s first take a look at the tensorial order:

0th order tensor: scalar (just a number). Examples:

1st order tensor: vector (a column of numbers). Examples:

Transposition:

2nd order tensor: matrix (an array of numbers). Examples:
(We only consider square matrices)

Transposition:

Identity matrix:

Operations between 1st order tensors (vectors):

Scalar product or inner product (or single-index contraction):
• takes 2 vectors as input (1st order) and gives 1 scalar (0th order)

Via Einstein notation (repeated indices that only 
appear in one side of the equation indicate a sum):

Via Matrix multiplication (see below):

It has commutative 
property

Tensor product or outer product:
• takes 2 vectors as input (1st order) and gives 1 matrix (2nd order)

Vector product or cross product:
• takes 2 vectors as input (1st order) and gives 1 vector (1st order)

Levi-Civita (permutation) tensor:

You can only apply this in 3D (*)
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Interesting property:

Operations between 2nd order tensors (matrices):

Matrix product (or single-index contraction):
• takes 2 matrices as input (2nd order) and gives 1 matrix (2nd order)

Scalar product or inner product (or double-index contraction):
• takes 2 matrices as input (2nd order) and gives 1 scalar (0th order)

Trace: an invariant of the matrix (i.e. does not change with the reference system [see below])
• takes 1 matrix as input (2nd order) and gives 1 scalar (0th order)

Determinant: another invariant of the matrix
• takes 1 matrix as input (2nd order) and gives 1 scalar (0th order)

In 3D you can use the Levi-Civita permutation tensor:
or (**)

(*) Another way to do the cross product:
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More properties:

Cofactor matrix:

Adjugate matrix:

Inverse matrix:

Determinant (simple way):

Tensorial functions and fuctionals:
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Rotation Matrix: Changing the reference system
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• If you change the reference system, say from x1,x2,x3 to x1’,x2’,x3’, the components of the 
vectors and the matrices change (assume different values)

Eigenvalues and Eigenvectors: Matrix diagonalization

A square symmetric matrix can always be diagonalized, i.e. You can find a specific coordinate 
system x1’,x2’,x3’ for which you can write your matrix as a diagonal one

• The eigenvalues of the matrix are also called principal values. They include the maximum 
and the minimum values each component of the matrix can ever achieve in any reference 
system. This is why the maximum principal stress is the maximum tensile stress 
experienced by the material in the analyzed point.
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